
Fundamental Theorem of Calculus
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1 Statement of the Theorem

The fundamental Theorem of Calculus is one of the most important theorems
in the history of mathematics, which was first discovered by Newton and
Leibniz independently. This theorem reveals the underlying relation between
differentiation and integration, which glues the two subjects into a uniform
one, called calculus.

Theorem 1. (The Fundamental Theorem of Calculus) Suppose f(x) is a
continuous function on [a, b]. Then:

i). d
dx

∫ x

a
f(t) dt = f(x)

ii).
∫ b

a
f(x) dx = F (b)− F (a), where F is an antiderivative of f

Remark 2. We sometimes also write F (b)− F (a) in the way F (x)

∣∣∣∣b
a

, so Part

(ii) of the theorem can also be written as
∫ b

a
f(x) dx = F (x)

∣∣∣∣b
a

Now we are going to look into each of these two parts of the theorem.

2 Part I

Let g(x) =
∫ x

a
f(t) dt, note g(x) is a function of x. Part (i) tells us that

d
dx
g(x) = f(x), i.e. g(x) is an antiderivative of f(x).
First we see a geometric explanation:

∫ x

0
f(t) dt is the signed area bounded

by f(t) and the interval [a, x]. If we increase x to x + h, the increase in the
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area is
∫ x+h

x
f(t) dt ≈ f(x)h when h is a small number. This indicates

f(x) ≈
∫ x+h

x
f(t) dt

h
≈ g(x+ h)− g(x)

h

when h is small, so it implies

g′(x) = lim
h→0

g(x+ h)− g(x)

h
= f(x)

Now let’s formulate an algebraic proof.

Proof. Define g(x) in the same way as above, we have

g(x+ h)− g(x)

h
=

∫ x+h

a
f(t) dt−

∫ x

a
f(t) dt

h
=

∫ x+h

x
f(t) dt

h

We may assume h > 0, the other case can be discussed in a similar fashion.
Consider the continuous function f on the closed interval [x, x + h]. We

know it has absolute maximum M and absolute minimum m on [x, x + h],

so mh ≤
∫ x+h

x
f(t) dt ≤Mh.

Assume f(u) = M and f(v) = m, where u, v are in [x, x+ h]. We get:

f(v)h ≤
∫ x+h

x

f(t) dt ≤ f(u)h

f(v) ≤
∫ x+h

x
f(t) dt

h
≤ f(u)

f(v) ≤ g(x+ h)− g(x)

h
≤ f(u)
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If we take h→ 0, since u, v are in [x, x+ h], it follows u→ x and v → x,
so f(u)→ f(x) and f(v)→ f(x), the last line of the inequalities implies

lim
h→0

f(v) ≤ lim
h→0

g(x+ h)− g(x)

h
≤ lim

h→0
f(u)

i.e. f(x) ≤ g′(x) ≤ f(x), we see g′(x) = f(x).

Example 3. Find d
dx

∫ x2

1
e3t dt

Let g(x) =
∫ x

1
e3t dt, we see

∫ x2

1
e3t dt = g(x2). The Fundamental Theorem

of Calculus says g′(x) = e3x. By the chain rule we get

d

dx
g(x2) = g′(x2)(x2)′ = e3(x2)(2x) = 2xe3x2

Example 4. Compute d
dx

∫ 3x−5

2x+1
t2 dt

Observe that
∫ 3x−5

2x+1
t2 dt =

∫ 3x−5

0
t2 dt−

∫ 2x+1

0
t2 dt, we see

d

dx

∫ 3x−5

2x+1

t2 dt =
d

dx

∫ 3x−5

0

t2 dt− d

dx

∫ 2x+1

0

t2 dt

= (3x− 5)2(3x− 5)′ − (2x+ 1)2(2x+ 1)′

= (3x− 5)2 × 3− (2x+ 1)2 × 2

= 3(3x− 5)2 − 2(2x+ 1)2

Definition 5. f is integrable on [a, b], define the average of f on [a, b] to be
the number

f̄[a,b] =
1

b− a

∫ b

a

f(x) dx

Example 6. If v(t) is a velocity function, then the average pf v(t) on [a, b],

v̄[a,b] = 1
b−a

∫ b

a
v(t) dt, is defined to be the average velocity on [a, b].

3 Part II

We first give a proof.
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Proof. By Part (i), d
dx

∫ x

a
f(t) dt = f(x), so g(x) =

∫ x

a
f(t) dt is an an-

tiderivative of f(x). If F (x) is another antiderivative of f(x), we know that
F (x) = g(x) + C for some constant C. This implies

F (b)− F (a) = g(b)− g(a) =

∫ b

a

f(t) dt−
∫ a

a

f(t) dt =

∫ b

a

f(t) dt

Remark 7. There is an intuitive explanation of Part (ii) as well.

We know that
∫ b

a
f(x) dx = limmax ∆xi→0

∑n
i=1 f(x∗i )∆xi, so when we take

max ∆x very small, we have∫ b

a

f(x) dx ≈
n∑

i=1

f(x∗i )∆xi

Now on each [xi−1, xi], since this is a small interval, we have

f(x∗) = F ′(x∗) ≈ F (xi)− F (xi−1)

xi − xi−1

=
F (xi)− F (xi−1)

∆xi

so
F (xi)− F (xi−1) ≈ f(x∗)∆xi∫ b

a

f(x) dx ≈
n∑

i=1

f(x∗i )∆xi ≈
n∑

i=1

F (xi)− F (xi−1) = F (b)− F (a)

finally, when we take the limit max ∆xi → 0, we get the equality.

Example 8. Evaluate
∫ 3

1
ex dx

An antiderivative of f(x) = ex is F (x) = ex, so by the Fundamental
Theorem of Calculus,∫ 3

1

ex dx = F (3)− F (1) = e3 − e

Definition 9. The indefinite integral of a function f is defined to be
∫
f(x) dx =

F (x) + C, where F ′(x) = f(x), i.e. F (x) is an antiderivative of f(x), and C
denotes a constant.
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Example 10. Evaluate
∫ 3

0
(x3 − 4x) dx

Since
∫

(x3 − 4x) dx = 1
4
x4 − 2x2 + C, we have∫ 3

0

(x3 − 4x) dx = (
1

4
× 34 − 2× 32)− (

1

4
× 04 − 2× 02) =

9

4

4 Applications

Example 11. We are going to prove the area formula for circles.

First, recall the definition of the number π: π is the ratio of the cir-
cumference and diameter of a circle. By this definition, we know that the
circumference of a circle of radius R is 2πR, since 2R is the diameter.

Now given a circle of radius R, we are going to find its area. We di-
vide [0, R] into n subintervals of equal length ∆r = R

n
, with endpoints r0 =

0, r1, ..., rn−1, rn = R, and by the following picture, we see that when n is
getting big, the are of the circle can be approximated by the following:

Rn =
n∑

i=1

(2πri)∆r

Taking the limit, we get the area of the circle is

lim
n→∞

Rn =

∫ R

0

2πr dr = πr2

∣∣∣∣R
0

= πR2
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Example 12. We can also use the idea above to obtain the volume formula
for a ball of radius R.

A ball of radius R can be described to be the region x2 + y2 + z2 ≤ R2 on
a Cartesian coordinate system. We can subdivide the ball into n horizontal
pieces of equal height ∆z = 2R

n
, and let r0 = −R, r1 = −R + 2R

n
, ..., rn = R.

When n is big, the volume of the i-th piece is close to a cylinder with radius√
R2 − r2

i and height ∆z, which is

Rn =
n∑

i=1

π(
√
R2 − r2

i )
2∆z =

n∑
i=1

π(R2 − r2
i )∆z

We get the volume for the ball to be

lim
n→∞

Rn = lim
n→∞

n∑
i=1

π(R2 − r2
i )∆z =

∫ R

−R
π(R2 − r2) dx

An antiderivative of 1− r2 is R2r − r3

3
, so∫ R

−R
π(R2 − r2) dx = π

∫ R

−R
(R2 − r2) dx

= π(R2r − r3

3
)

∣∣∣∣R
−R

=
4

3
πR3

Example 13. In this example we will get the surface area of a sphere of
radius R.

Given a ball of radius R, there is another way to compute its volume:
divide the interval [0, R] into n subintervals of equal length ∆r to decompose
the ball into shells. If we denote the surface area of a sphere of radius r to
be S(x), then we see the volume of the ball can be approximated by

Rn =
n∑

i=1

f(ri)∆r
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Taking the limit as n→∞, we get the volume:∫ R

0

f(r) dr

By Part (i) of the theorem, we know d
dR

∫ R

0
f(r) dr = f(R), and on the other

hand, we have already computed in the previous example that
∫ R

0
f(r) dr =

4
3
πR3, so

f(R) =
d

dR
(
4

3
πR3) = 4πR2
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